Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Oktober 2005

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz – Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 07. Dezember 2005

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Tonbanddienst der Post:	0512/1552
⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

3
4
5
6
7
10
12
15
18
20
24
28
30
33
36
39
42
45
47
50
53
56
59
61
65
67
07
70

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäss IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäss IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäss IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid
NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

Gl.JMW Gleitender Jahresmittelwert

MMW Monatsmittelwert
TMW Tagesmittelwert

IGL 8-MW Maximaler Achtstundenmittelwert laut Immissionsschutzgesetz Luft

Max 8-MW Maximaler Achtstundenmittelwert (gleitend)
Max 3-MW Maximaler Dreistundenmittelwert (gleitend)

Max 1-MW Maximaler Einstundenmittelwert

Max HMW Maximaler Halbstundenmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

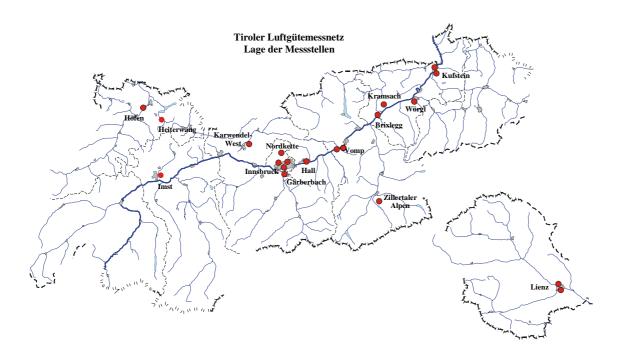
als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen

VDI Verein Deutscher Ingenieure

2. FVO 2. Verordnung gegen forstschädliche Luftverunreinigungen


BGBl.Nr. 89/1984 (2. Forstverordnung)

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (IG-L,BGBl. 115/97)

n.a. nicht ausgewertet

	резі	UCKU	NGSLISTE	1			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	C
Höfen – Lärchbichl	880 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	995 m	-	•/-	•	•	-	-
Imst – Imsterau	726 m	-	•/-	•	•	-	-
Karwendel – West	1730 m	-	-/-	-	-	•	-
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstrasse	580 m	•	•/•	•	•	-	
Innsbruck – Sadrach	670 m	-	-/-	-	-	•	-
Nordkette	1950 m	-	-/-	•	•	•	-
Gärberbach – A13	680 m	-	•/-	•	•	-	-
Hall in Tirol – Münzergasse	560 m	-	•/-	•	•	-	-
Vomp – Raststätte A12	550 m	-	•/-	•	•	-	-
Vomp – An der Leiten	520 m	-	•/-	•	•	-	-
Zillertaler Alpen	1930 m	-	-/-	-	-	•	-
Brixlegg – Innweg	520 m	•	•/-	-	-	-	-
Kramsach – Angerberg	600 m	-	-/-	•	•	•	-
Wörgl – Stelzhamerstrasse	510 m	-	•/-	•	•	-	-
Kufstein – Praxmarerstrasse	500 m	•	•/-	•	•	-	-
Kufstein – Festung	560 m	-	-/-	-	-	•	-
Lienz – Amlacherkreuzung	670 m	•	•/-	•	•	-	
Lienz – Sportzentrum	670 m	_	-/-	_	_	•	-

Kurzübersicht über die Einhaltung von Grenzwerten (für Ozon und Stickstoffdioxid auch Zielwert) Oktober 2005

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	03	CO
HÖFEN Lärchbichl					P	
HEITERWANG Ort / B179				Ö		
IMST Imsterau		I_P		Ö		
KARWENDEL West					P M	
INNSBRUCK Andechsstrasse		I_{P}		Ö	P	
INNSBRUCK Fallmerayerstrasse				Ö		
INNSBRUCK Sadrach					Р	
NORDKETTE					P M	
GÄRBERBACH A13				Ö		
HALL IN TIROL Münzergasse		I_P		Ö		
VOMP Raststätte A12				I _Z Ö		
VOMP An der Leiten				Ö		
ZILLERTALER ALPEN					P M	
BRIXLEGG Innweg						
KRAMSACH Angerberg				Ö	P	
WÖRGL Stelzhamerstrasse				Ö		
KUFSTEIN Praxmarerstrasse						
KUFSTEIN Festung					P	
LIENZ Amlacherkreuzung				Ö		
LIENZ Sportzentrum						

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
F	Überschreitung der Grenzwerte der 2. FVO
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme
В	Überschreitung der Grenzwerte der Vereinbarung gemäß Art. 15a B-VG über die
В	Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2
I_{G}	Überschreitung von Grenzwerten für Stickstoffdioxid gem. Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Informationsschwelle gemäß Ozongesetz.
I_Z	Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Grenzwert zum Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
I_P	Überschreitung des im Immissionsschutz Gesetz Luft genannten Tages ziel wertes von 50µg/m³ für PM10. Der PM10-Tages grenz wert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
1	Überschreitung von Warnwerten gemäß IG-L bzw. der Alarmschwelle gemäß Ozongesetz
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Oktober 2005

Messnetz

Am Messnetz wurden keine Standortveränderungen durchgeführt. Die Verfügbarkeiten der gemessenen Schadstoffkomponenten sind den Messstellentabellen zu entnehmen. Die Messungen für TSP (Schwebstaub; Total Suspended Particles) wurde gesetzeskonform eingestellt. Seit 1.1. wird an 3 Standorten sowohl die radiometrische wie auch die gravimetrische Methode zur PM10-Messung durchgeführt, an der Trendmessstelle INNSBRUCK/Fallmerayerstrasse zusätzlich PM2,5 (gravimetrische Methode). Die Wägung der besaugten Filter wird vorübergehend vom Amt der Salzburger Landesregierung in Amtshilfe besorgt.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

So mancher fühlte sich durch diesen Oktober für den unrühmlichen Sommer entschädigt. Denn ein prächtiges Hoch sorgte wochenlang für traumhaften Altweibersommer.

Die Temperaturen wiesen häufig große Tagesgänge auf, das Monatsmittel entsprach in Osttirol ganz dem Soll, in Nordtirol war es um etwa 1 Grad zu warm, im Unterland teilweise sogar um 2 Grad. Übrigens war es im Oktober 2004 noch wärmer. Besonders mild war es zu Monatsende, so wurden am 29.10. in Reutte noch 22,3 Grad erreicht. In der Landeshauptstadt gab es nur einen Frosttag anstatt der zu erwartenden vier.

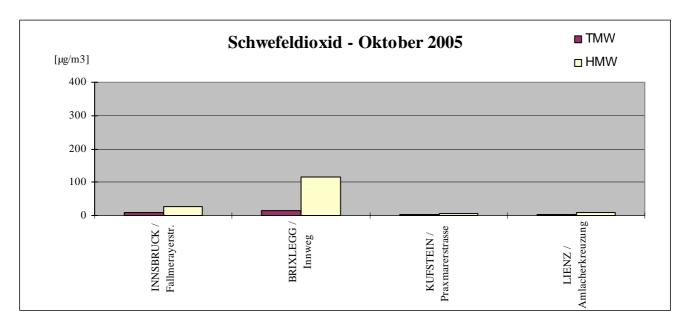
Es gab lediglich 6 Regentage, wobei 5 davon die ersten 5 Tage des Monats waren. In Nordtirol wurden bis Monatsende nur 1/3 bis 2/3 des Solls an Niederschlag gemessen, nur nahe des Alpenhauptkammes wurde die mittlere Summe annähernd erreicht. Das Italientief in der ersten Oktoberwoche deckte Osttirol so massiv ein, dass in kurzer Zeit Mengen zusammen kamen, die das Monatssoll übertrafen. In Lienz etwa fielen 174% des Normalniederschlags.

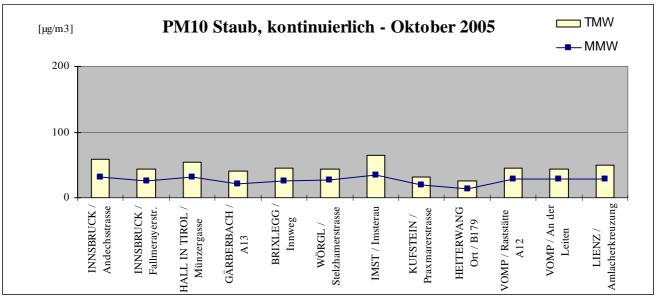
Das tagelange Schönwetter schlug sich auch in der Sonnenscheinstatistik zu Buche. Mit 201 Sonnenstunden wurde das Mittel um mehr als 50 Stunden übertroffen. Der Rekord aus dem Jahre 1995 mit 233 Stunden blieb aber außer Reichweite.

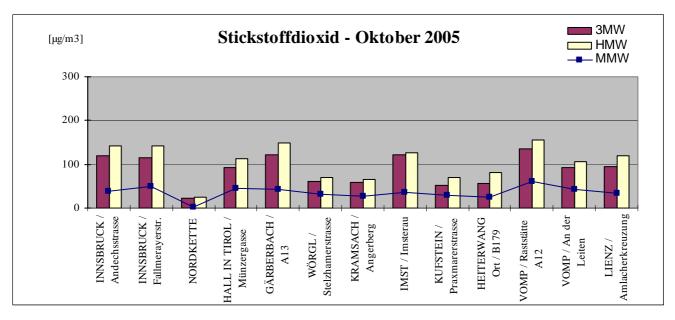
Luftschadstoffübersicht

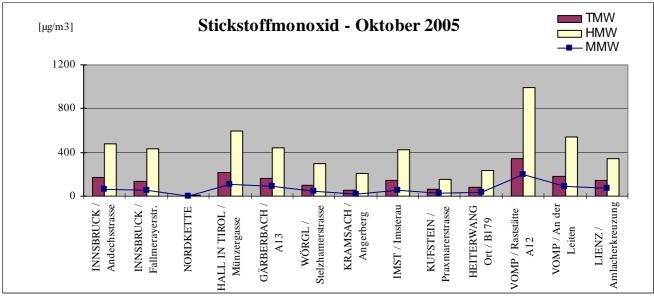
Bei den **Schwefeldioxidmessungen** wurden an allen 4 Messstellen geringe Belastungen festgestellt. Der höchste Einzelwert wurde mit 117 μ g/m³ an der Messstelle Brixlegg/Innweg gemessen. Mit 15 μ g/m³ liegt der höchste Tagesmittelwert dort noch deutlich unterhalb des gesetzlich festgelegten Tagesgrenzwert nach dem Immissionsschutzgesetz Luft (120 μ g/m³).

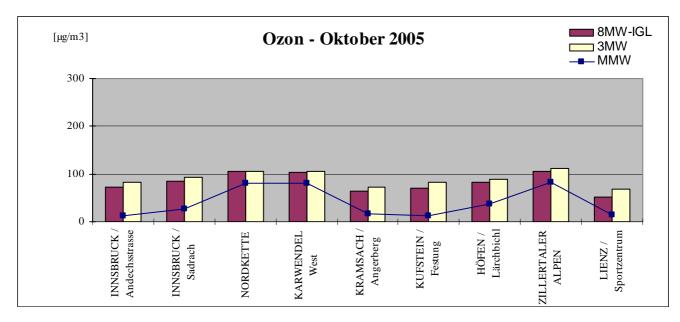
Bei der Feinstaubkomponente **PM10** wurden im Oktober zum Teil hohe Werte ermittelt. Der hier geltende gesetzliche Tagesgrenzwert nach dem Immissionsschutzgesetz Luft (50µg/m³) wurde an 3 Messstationen überschritten (INNSBRUCK/Andechsstrasse zweimal, je einmal in IMST/Imsterau und HALL .i.T./Münzergasse). Das Kontingent von 30 Tagesgrenzwertüberschreitungen im Kalenderjahr gem. Immissionsschutzgesetz Luft haben mit Ende Oktober die Standorte INNSBRUCK/Andechsstrasse, LIENZ/Amlacherkreuzung und HALL .i.T./Münzergasse überschritten.

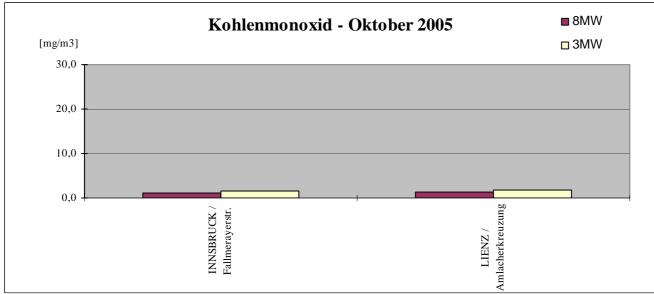

Ein deutlich gestiegenes Belastungsausmaß war bei den Stickoxidimmissionen festzustellen. In Vomp/Raststätte A12 wurden beim **Stickstoffmonoxid** mit 992 μ g/m³ als höchsten Einzelwert der Grenzwert gemäß VDI-Richtlinie (1000 μ g/m³) gerade noch eingehalten. Hier beträgt der Monatsmittelwert 201 μ g/m³, die weiteren autobahnnahen Standorte VOMP/An der Leiten und MUTTERS/Gärberbach A13 liegen mit 92 bzw. 86 μ g/m³ deutlich tiefer.


Überschreitungen an diesen beiden Messstellen gab es beim **Stickstoffdioxid** unter Bezugnahme auf den Kurzzeitgrenzwert zum Schutz des Menschen nach dem Immissionsschutzgesetz Luft (Halbstundenmittelwert von $200\mu g/m^3$) nirgendwo. Der Zielwert als Tagesmittelwert nach dem Immissionsschutzgesetz Luft von $80~\mu g/m^3$ wurde jedoch an der Messstelle Vomp/Raststätte A12 an einem Tag überschritten.

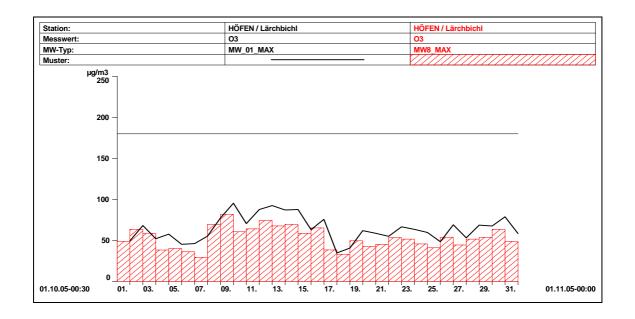

Die **Ozon**messungen zeigen, dass an 8 der insgesamt 9 Messstellen die Immissionskonzentrationen zum Schutz der Vegetation nach der ÖAW (Österreichischen Akademie der Wissenschaften) überschritten wurden, jene zum Schutz der menschlichen Gesundheit an den drei hochalpinen Messorten KARWENDEL/West, NORDKETTE und ZILLERTALER ALPEN. Lediglich LIENZ/Sportzentrum sind alle wirkungsbezogenen Grenzkonzentrationen der Österreichischen Akademie der Wissenschaften eingehalten.


Bei der Schadstoffkomponente **Kohlenmonoxid** wurden der gesetzlich festgesetzte Grenzwert an beiden Tiroler Messstellen bei weitem eingehalten.


Stationsvergleich



Zeitraum: OKTOBER 2005 Messstelle: HÖFEN / Lärchbichl


	SC)2	PM10	PM10	NO		NO2				03				СО	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$			$\mu g/m^3$					mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									47	49	49	49	51			
So 02.									61	63	65	68	69			
03.									36	59	53	52	54			
04.									37	38	50	58	60			
05.									35	40	43	45	46			
06.									33	36	44	46	47			
07.									30	29	47	55	59			
08.									63	69	76	77	79			
So 09.									79	82	90	95	97			
10.									58	61	69	70	71			
11.									61	64	78	88	93			
12.									72	74	90	92	94			
13.									66	68	85	87	88			
14.									67	70	86	88	89			
15.									57	59	63	63	64			
So 16.									60	65	73	76	80			
17.									29	38	31	35	36			
18.									32	33	40	41	42			
19.									49	50	58	62	64			
20.									41	43	53	59	60			
21.									42	45	54	55	59			
22.									51	53	64	67	67			
So 23.									50	52	61	63	66			
24.									44	46	58	60	60			
25.									41	41	46	48	50			
26.									51	54	67	69	69			
27.									45	44	51	53	53			
28.									50	52	64	69	70			
29.									53	54	61	68	69			
So 30.									63	63	74	79	79			
31.									48	49	57	58	59			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						97	
Max.1-MW						95	
Max.3-MW						90	
IGL8-MW						79	
Max.8-MW						82	
Max.TMW						54	
97,5% Perz.							
MMW						37	
Gl.JMW							

Zeitraum: OKTOBER 2005 Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	tichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					10	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

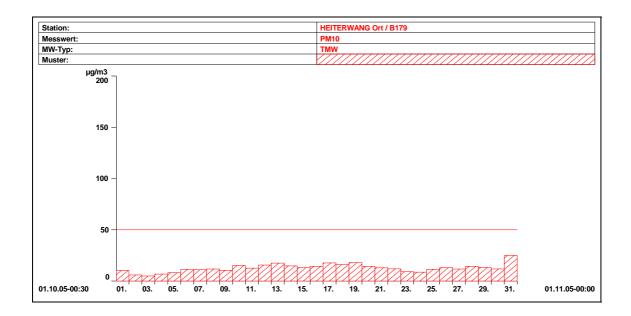
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

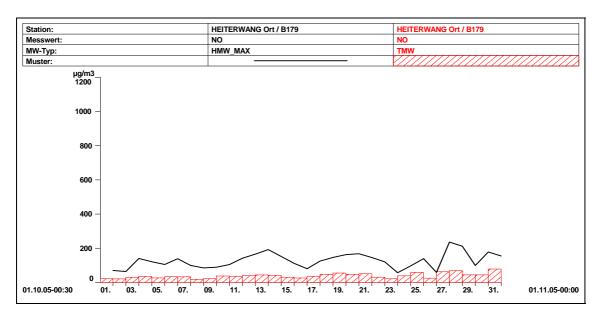
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

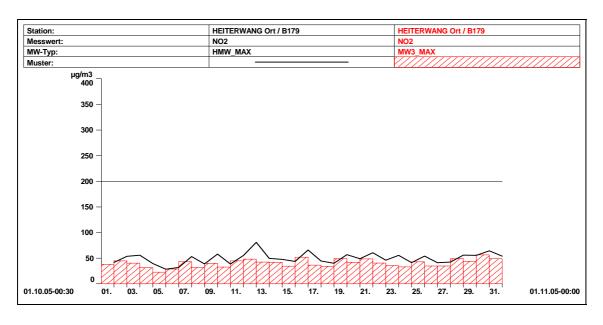
Messstelle: HEITERWANG Ort / B179

	SC)2	PM10	PM10	NO		NO2			О3				CO		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			10		70	23	40	42								
So 02.			6		64	23	48	54								
03.			5		140	20	44	56								
04.			7		121	19	34	40								
05.			8		105	14	26	28								
06.			11		139	17	30	32								
07.			11		99	25	50	53								
08.			12		85	19	34	39								
So 09.			11		89	19	50	58								
10.			15		104	19	37	39								
11.			13		142	22	52	55								
12.			16		166	28	61	81								
13.			17		192	26	44	50								
14.			15		152	22	43	48								
15.			13		112	21	39	44								
So 16.			14		80	23	60	66								
17.			18		125	23	38	45								
18.			16		146	25	37	40								
19.			18		163	31	51	57								
20.			14		168	26	45	49								
21.			13		146	24	53	61								
22.			12		120	24	42	46								
So 23.			9		57	20	43	55								
24.			9		97	22	39	41								
25.			11		139	28	51	54								
26.			13		59	22	38	41								
27.			12		236	24	37	42								
28.			14		212	30	53	56								
29.			13		99	28	45	56								
So 30.			12		178	29	61	64								
31.			25		155	34	53	54								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				236	81		
Max.1-MW					61		
Max.3-MW					56		
IGL8-MW							
Max.8-MW							
Max.TMW		25		78	34		
97,5% Perz.							
MMW				39	24		
Gl.JMW		16			28		


Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

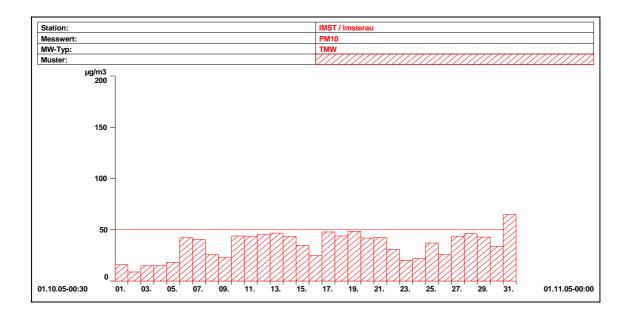
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

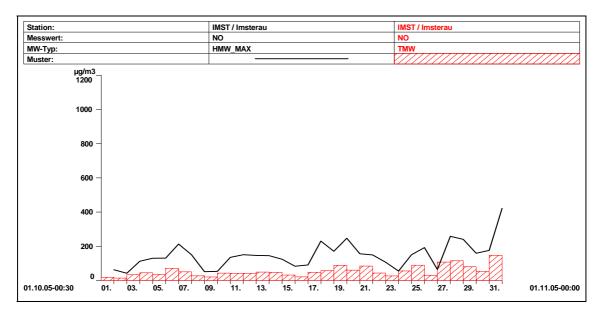
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

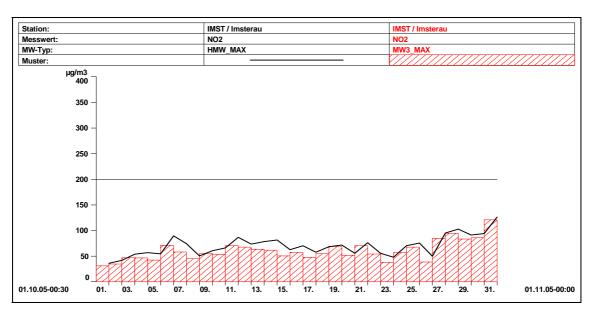
Zeitraum: OKTOBER 2005 Messstelle: IMST / Imsterau

	SC)2	PM10	PM10	NO	_	NO2		03					со		
	μg	/3	kont. μg/m³	grav.	μg/m³	_	μg/m³			$\mu g/m^3$				mg/m³		
	μg/	max	μg/III	μg/m³			max	max	IGL	max	max	- many	max	max	max	max
Tag	TMW	HMW	TMW	TMW	max HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	max 1-MW	HMW	8-MW	1-MW	HMW
01.			16		62	25	33	36								
So 02.			9		42	23	37	42								
03.			15		112	31	48	54								
04.			15		130	29	53	57								
05.			18		130	28	50	54								
06.			42		213	37	82	90								
07.			40		151	34	59	74								
08.			26		51	32	49	50								
So 09.			23		53	25	58	61								
10.			44		135	33	53	66								
11.			44		151	34	83	87								
12.			45		146	41	72	74								
13.			47		145	43	66	78								
14.			43		124	38	68	82								
15.			35		83	32	56	63								
So 16.			25		90	27	70	70								
17.			48		230	33	51	58								
18.			44		171	36	63	68								
19.			48		247	44	70	72								
20.			42		156	34	54	56								
21.			42		149	39	74	76								
22.			31		107	33	55	56								
So 23.			20		55	26	39	48								
24.			22		150	30	59	71								
25.			37		192	39	75	76								
26.			26		64	23	43	50								
27.			44		258	41	89	95								
28.			46		240	49	101	103								
29.			43		159	47	87	91								
So 30.			34		176	41	93	94								
31.			65		422	59	123	126								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				422	126		
Max.1-MW					123		
Max.3-MW					121		
IGL8-MW							
Max.8-MW							
Max.TMW		65		147	59		
97,5% Perz.							
MMW				54	35		
Gl.JMW		31			39		


Zeitraum: **OKTOBER 2005** Messstelle: IMST / Imsterau

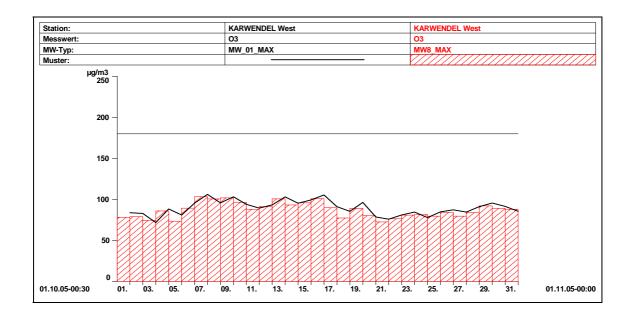

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО							
Gesetzliche Alarm-, Grenz- und Zielwerte	,												
IG-L: Warnwerte				0									
IG-L: Grenzwerte menschliche Gesundheit		1		0									
IG-L: Zielwerte menschliche Gesundheit		1		0									
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.									
OZONGESETZ: Alarmschwelle													
OZONGESETZ: Informationsschwelle													
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit													
2.FVO gegen forstschädliche Luftverunreinigungen													
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0									
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	ichtlini	ie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				11									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1									
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete													
VDI-RL 2310: NO-Grenzwert			0										


 $[\]ddot{\mathrm{U}}\mathrm{1}\mathrm{)}$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Zeitraum: OKTOBER 2005 Messstelle: KARWENDEL West


	SO)2	PM10	PM10	NO		NO2			_	03		_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									77	78	81	84	85			
So 02.									79	79	81	83	84			
03.									67	74	72	72	73			
04.									81	86	88	88	96			
05.									73	73	80	81	82			
06.									88	89	93	95	96			
07.									102	103	106	106	106			
08.									92	101	95	96	99			
So 09.									102	102	103	103	104			
10.									92	96	94	94	94			
11.									88	88	89	89	91			
12.									90	91	93	93	94			
13.									100	101	102	103	104			
14.									92	93	95	95	98			
15.									95	96	98	99	101			
So 16.									100	101	103	105	106			
17.									84	90	89	91	98			
18.									76	77	80	85	86			
19.									86	89	93	96	99			
20.									76	80	78	79	80			
21.									73	73	74	76	76			
22.									75	76	80	81	84			
So 23.									81	81	84	85	86			
24.									74	82	82	78	79			
25.									79	80	85	85	90			
26.									84	84	87	87	88			
27.									79	80	82	85	85			1
28.									83	84	89	91	92			
29.									92	92	95	96	96			
So 30.									89	89	90	91	92			
31.									80	88	88	86	86			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						106	
Max.1-MW						106	
Max.3-MW						106	
IGL8-MW						102	
Max.8-MW						103	
Max.TMW						97	
97,5% Perz.							
MMW						80	
Gl.JMW							

Zeitraum: OKTOBER 2005 Messstelle: KARWENDEL West

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Cichtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					5	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

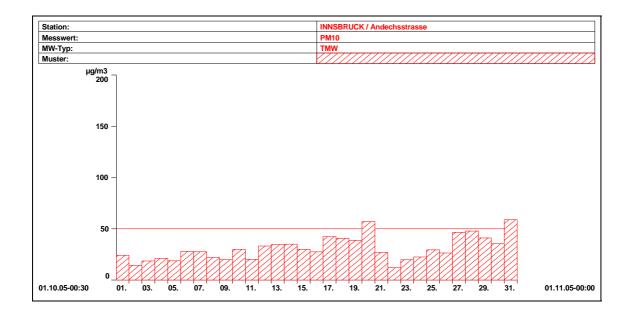
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

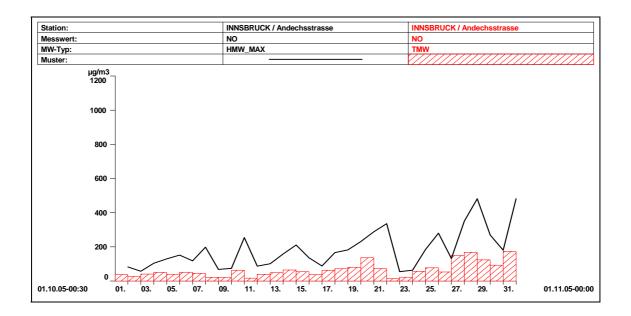
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

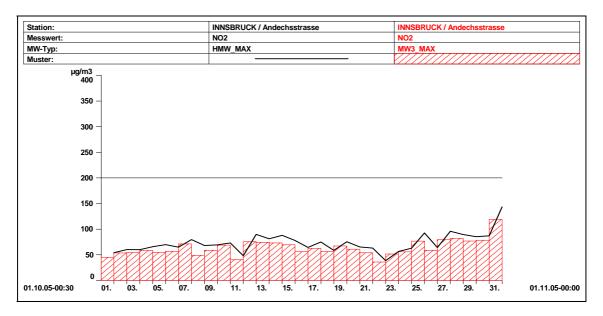
Messstelle: INNSBRUCK / Andechsstrasse

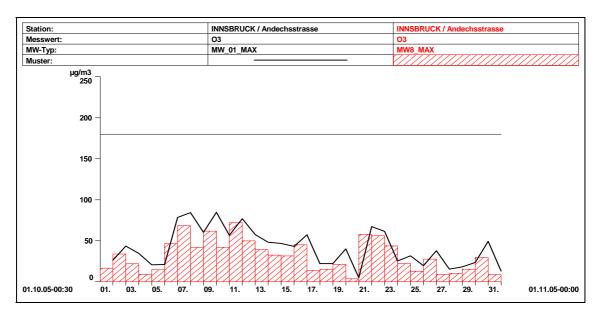
	SC)2	PM10	PM10	NO		NO2		_		03			_	CO	_
			kont.	grav.			-									
	μg		μg/m³	μg/m³	μg/m³		μg/m³			I	μg/m³	I			mg/m³	
	TD 4337	max	T 131	TD 4337	max	TD 4337	max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			24		82	33	49	54	18	17	27	26	32			
So 02.			14		57	32	59	60	30	34	39	44	45			
03.			19		104	35	57	60	13	22	33	35	38			
04.			21		130	35	64	66	9	9	17	21	23			
05.			19		152	34	60	70	14	15	19	21	25			
06.			28		118	32	62	65	44	46	75	78	79			
07.			28		198	33	76	80	57	68	83	84	85			
08.			22		68	33	63	68	41	42	58	60	63			
So 09.			20		74	27	63	69	53	62	82	85	86			
10.			30		254	39	73	73	35	42	54	57	61			
11.			20		87	26	42	48	71	72	76	77	78			
12.			33		101	46	83	90	37	50	51	58	62			
13.			35		158	47	81	81	36	39	47	48	53			
14.			35		211	45	82	88	30	32	44	47	53			
15.			30		136	42	73	78	28	32	40	43	45			
So 16.			27		88	32	60	64	39	45	57	57	61			
17.			42		166	38	72	75	13	14	20	22	24			
18.			41		182	38	57	59	14	15	21	22	26			
19.			39		231	44	73	75	21	21	34	40	43			
20.			57		288	48	62	65	4	4	5	5	5			
21.			27		336	30	60	63	55	58	65	67	67			
22.			12		55	25	36	39	54	56	59	61	63			
So 23.			20		63	33	53	57	19	44	24	25	26			
24.			23		185	34	62	63	21	22	30	32	35			
25.			29		280	42	84	93	12	13	18	20	21			
26.			26		132	33	62	64	29	28	37	38	39			
27.			46		351	48	88	96	9	9	14	15	17			
28.			48		482	54	84	89	10	10	15	18	20			
29.			41		269	51	83	85	14	15	24	24	30			
So 30.			35		180	43	81	87	28	30	45	49	49			
31.			59		482	63	142	143	8	9	15	13	25			

	SO2	PM10 kont.	PM10	NO	NO2	03	со
	$\mu g/m^3$	μg/m³	grav. μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31	31	
Verfügbarkeit		100%		98%	98%	98%	
Max.HMW				482	143	86	
Max.1-MW					142	85	
Max.3-MW					119	83	
IGL8-MW						71	
Max.8-MW						72	
Max.TMW		59		173	63	40	
97,5% Perz.							
MMW				65	39	13	
Gl.JMW		35			44		


Messstelle: INNSBRUCK / Andechsstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				12	3	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	0	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

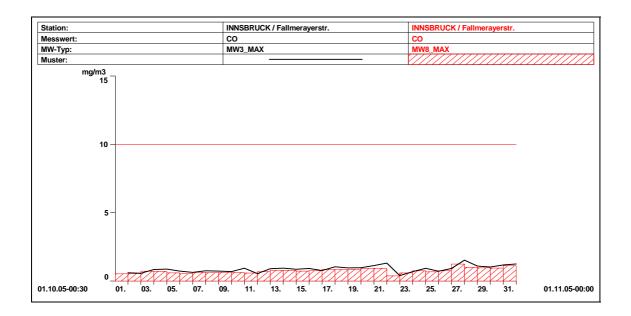

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

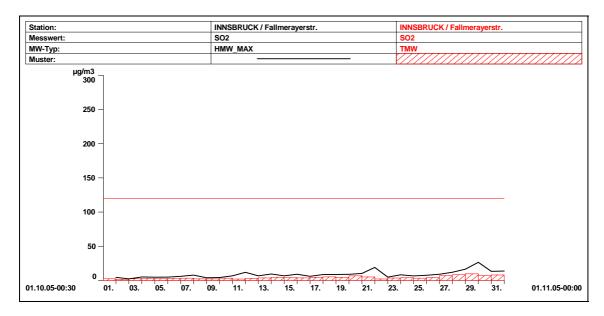
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

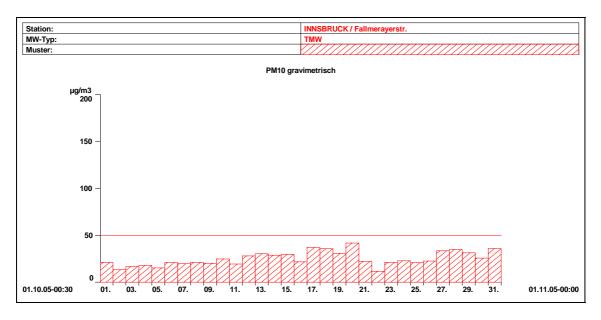
Messstelle: INNSBRUCK / Fallmerayerstrasse

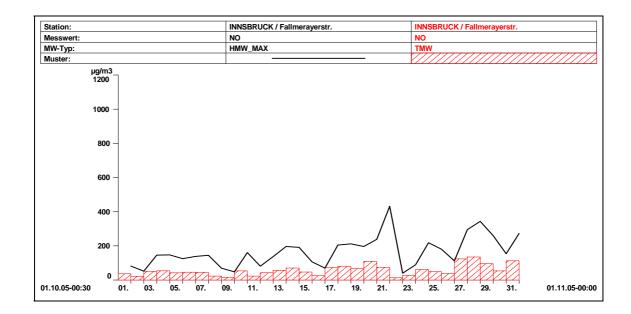
	SO	02	PM10	PM2,5	NO		NO2			_	03				CO	_
			grav.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	2	5	21	16	82	42	62	69						0.5	0.7	0.7
So 02.	1	2	13	12	52	38	58	61						0.6	0.6	0.7
03.	3	5	17	12	146	45	76	79						0.7	1.0	1.0
04.	3	5	18	13	147	45	85	87						0.7	1.2	1.3
05.	3	5	15	9	125	43	84	91						0.6	0.9	1.0
06.	3	6	21	16	138	43	81	86						0.5	0.8	0.9
07.	3	8	20	14	145	45	86	91						0.6	0.7	0.8
08.	2	4	21	14	69	44	76	78						0.6	0.8	0.8
So 09.	2	4	20	14	48	34	72	81						0.6	0.6	0.7
10.	3	7	25	15	161	52	96	113						0.6	1.0	1.1
11.	2	12	19	13	81	38	54	57						0.6	0.6	0.7
12.	3	7	28	18	137	58	116	129						0.7	1.1	1.2
13.	4	9	30	21	196	63	125	136						0.8	1.2	1.5
14.	4	7	29	21	191	61	107	116						0.8	0.9	1.0
15.	4	9	29	20	107	52	83	84						0.7	1.0	1.1
So 16.	4	6	22	20	70	40	77	81						0.8	0.6	0.8
17.	5	9	37	28	205	51	102	104						0.8	1.4	1.4
18.	5	9	36	25	212	51	85	91						0.8	1.0	1.2
19.	4	9	31	20	197	54	93	94						0.8	1.5	2.0
20.	7	10	42	28	239	60	92	95						0.9	1.2	1.2
21.	5	19	22	15	432	44	95	98						0.9	1.5	1.6
22.	2	5	11	7	40	31	40	42						0.4	0.4	0.5
So 23.	4	8	21	16	89	45	72	74						0.6	0.9	1.1
24.	4	7	23	17	218	47	77	90						0.7	1.2	1.6
25.	3	8	21	15	180	48	77	78						0.7	0.8	0.9
26.	4	9	23	18	112	42	78	84						0.8	1.0	1.0
27.	7	12	33	24	295	64	130	141						1.2	1.9	2.1
28.	8	16	35	25	343	70	103	112						1.0	1.2	1.4
29.	10	26	31	24	260	68	98	106						1.0	1.3	1.3
So 30.	7	13	26	21	154	55	90	94						0.9	1.3	1.4
31.	8	14	36	25	273	73	135	135						1.1	1.4	1.6

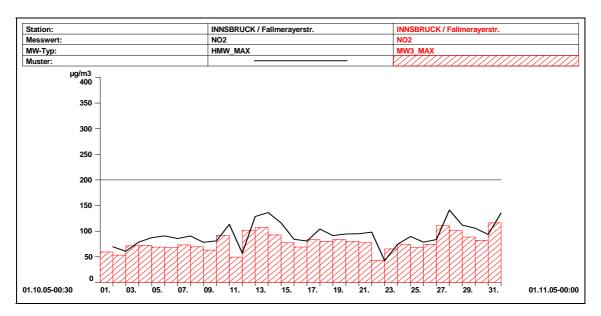
	SO2	PM10	PM2,5	NO	NO2	03	со
	μg/m³	grav. μg/m³	grav. μg/m³	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31		31
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	26			432	141		2.1
Max.1-MW					135		1.9
Max.3-MW	21				116		1.5
IGL8-MW							
Max.8-MW							1.2
Max.TMW	10	42	28	135	73		0.9
97,5% Perz.	12						
MMW	4	25	18	57	50	-	0.6
Gl.JMW					52		


Messstelle: INNSBRUCK / Fallmerayerstrasse

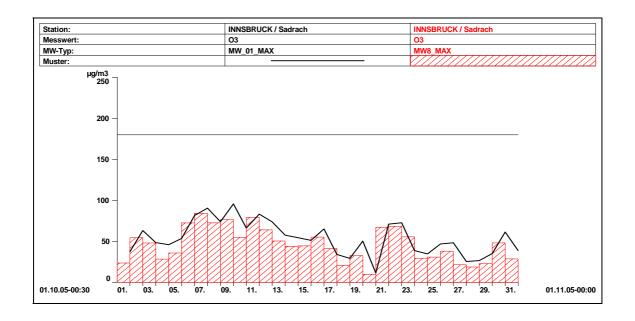

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		0
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0			0		0
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		_
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: INNSBRUCK / Sadrach


	SO)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									21	26	34	37	38			
So 02.									54	55	62	63	63			
03.									28	48	45	49	52			
04.									29	28	36	46	49			
05.									34	36	50	54	56			
06.									71	73	80	82	85			
07.									83	84	90	91	91			
08.									55	73	70	74	78			
So 09.									76	77	93	96	96			
10.									52	55	65	66	71			
11.									78	79	82	83	84			
12.									55	64	71	74	78			
13.									45	50	55	58	62			
14.									40	44	51	54	57			
15.									42	45	48	51	53			
So 16.									55	55	64	65	71			
17.									21	41	34	34	35			
18.									19	21	28	29	34			
19.									32	33	44	50	51			
20.									10	10	11	11	13			
21.									65	67	70	71	72			
22.									67	68	71	73	73			
So 23.									29	56	39	39	42			
24.									26	30	34	35	37			
25.									30	31	44	47	48			
26.									36	38	47	48	52			
27.									16	21	24	25	26			
28.									18	19	24	27	28			
29.									23	23	33	35	38			
So 30.									47	48	59	61	62			
31.									27	29	36	39	40			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						96	
Max.1-MW						96	
Max.3-MW						93	
IGL8-MW						83	
Max.8-MW						84	
Max.TMW						53	
97,5% Perz.							
MMW						27	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONODODZZ AL., I. II.					0	
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Sichtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					8	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

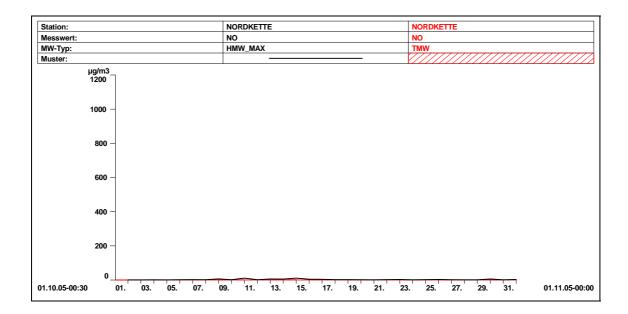
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

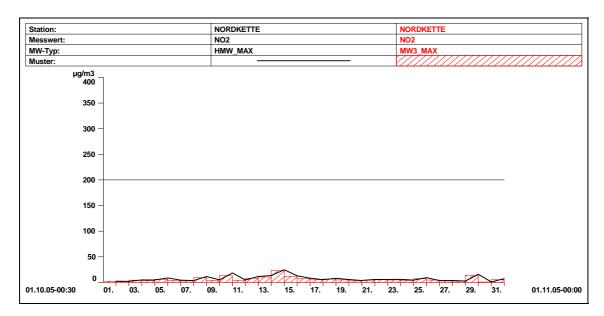
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

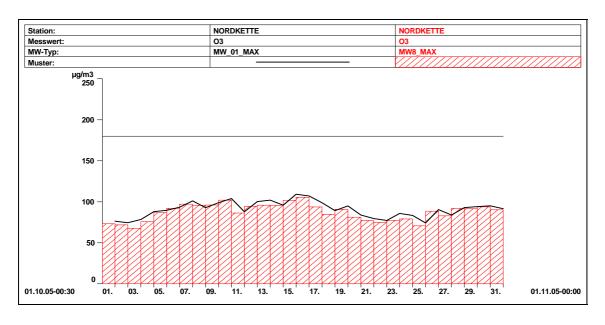
Zeitraum: OKTOBER 2005 Messstelle: NORDKETTE

	SC)2	PM10	PM10	NO		NO2		_		03				со	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				μg/m³	1			mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					1	1	2	2	73	73	76	76	76			
So 02.					1	1	2	2	71	72	74	75	76			
03.					1	2	5	5	66	68	74	78	79			
04.					1	1	4	5	74	76	81	88	88			
05.					2	2	7	9	86	87	89	90	90			
06.					2	1	3	4	91	92	93	93	95			
07.					2	1	3	4	97	97	100	101	102			
08.					7	4	11	11	91	96	92	93	96			
So 09.					2	2	5	5	96	96	98	99	100			
10.					12	5	16	18	101	102	103	104	104			
11.					2	3	5	5	86	86	88	88	88			
12.					6	4	9	12	93	95	99	100	100			
13.					6	4	10	13	95	96	101	102	102			
14.					12	10	24	25	93	96	95	96	97			
15.					5	4	12	13	102	102	106	109	111			
So 16.					4	3	8	8	104	105	106	107	107			
17.					2	3	5	5	93	94	98	99	102			
18.					2	5	8	8	84	85	88	89	89			
19.					2	3	5	6	90	91	94	95	96			
20.					2	2	4	4	81	81	83	84	84			
21.					2	3	5	6	77	77	79	80	80			
22.					3	3	5	6	75	75	76	77	77			
So 23.					2	2	5	6	77	77	85	86	89			
24.					2	2	4	5	76	79	84	83	86			
25.					4	4	8	9	70	71	73	74	76			
26.					2	1	3	4	88	89	90	91	91			
27.					2	1	3	4	81	83	84	84	85			
28.					2	1	3	3	91	92	92	93	94			
29.					6	3	14	16	92	92	94	94	95			
So 30.					1	0	1	1	94	94	95	95	96			
31.					3	2	7	7	89	90	91	92	92			

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				12	25	111	
Max.1-MW					24	109	
Max.3-MW					23	106	
IGL8-MW						104	
Max.8-MW						105	
Max.TMW				3	10	96	
97,5% Perz.	-						
MMW	-	-		1	3	81	
Gl.JMW					4		


Zeitraum: OKTOBER 2005 Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	3	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			_


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

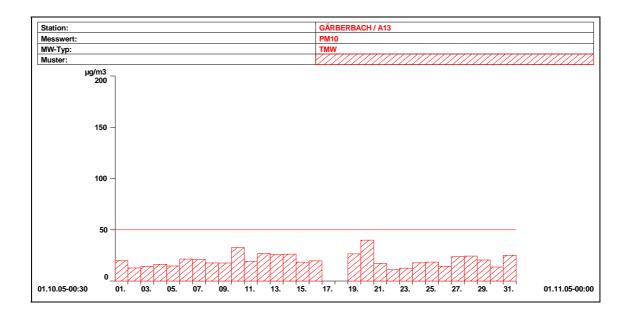
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

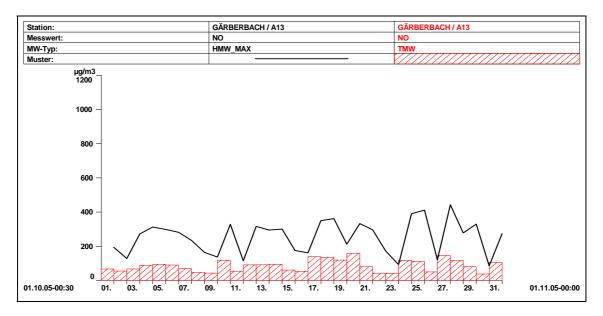
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

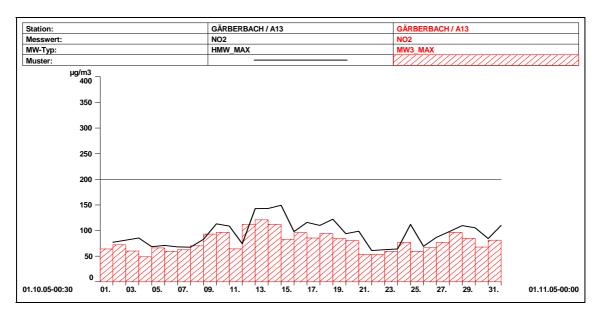
Zeitraum: OKTOBER 2005 Messstelle: GÄRBERBACH / A13

	SC)2	PM10	PM10	NO		NO2		03				-	со	_	
	μg	/m3	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³		$\mu g/m^3$						mg/m³	
	μg/	max	μg/III	μg/III	max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			20		193	35	72	77								
So 02.			13		128	48	79	81								
03.			14		272	37	65	85								
04.			16		313	34	53	68								
05.			15		299	38	71	71								
06.			21		282	35	63	68								
07.			21		234	37	67	68								
08.			18		164	44	71	83								
So 09.			18		137	35	107	113								
10.			33		328	49	108	109								
11.			19		115	39	69	74								
12.			27		316	52	122	143								
13.			26		295	54	140	143								
14.			26		300	52	123	149								
15.			18		175	44	97	98								
So 16.			20		161	43	105	116								
17.					350	48	98	110								
18.					362	45	101	122								
19.			26		212	54	90	94								
20.			40		333	52	86	99								
21.			17		296	36	59	61								
22.			11		173	30	59	63								
So 23.			13		93	37	63	64								
24.			18		390	35	85	112								
25.			19		412	40	66	69								
26.			14		121	37	79	87								
27.			24		443	43	95	98								
28.			24		278	54	108	110								
29.			21		330	54	93	105								
So 30.			14		85	40	73	84								
31.			25		274	52	89	110								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		29		31	31		
Verfügbarkeit		98%		98%	98%		
Max.HMW				443	149		
Max.1-MW					140		
Max.3-MW					121		
IGL8-MW							
Max.8-MW							
Max.TMW		40		159	54		
97,5% Perz.							
MMW				86	43		
Gl.JMW		26			52		


OKTOBER 2005 Zeitraum: Messstelle: GÄRBERBACH / A13


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OCCUPATION AND AND AND AND AND AND AND AND AND AN						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				21		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

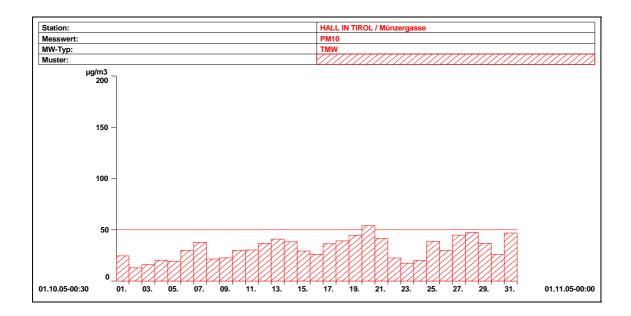
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

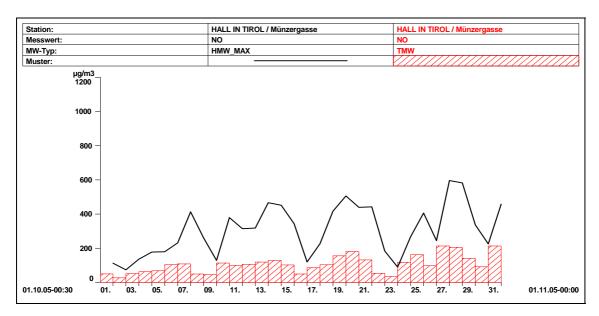
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

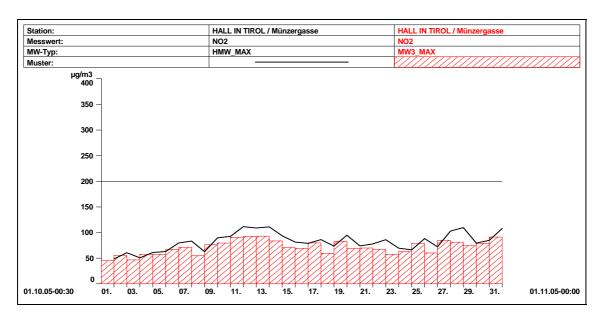
Messstelle: HALL IN TIROL / Münzergasse

	SC)2	PM10	PM10	NO		NO2		_		03				со	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			25		112	35	48	49								
So 02.			13		74	38	60	61								
03.			16		136	36	49	51								
04.			20		178	35	59	61								
05.			19		179	37	61	63								
06.			30		231	40	74	80								
07.			38		413	43	79	83								
08.			21		261	39	61	63								
So 09.			23		129	34	85	90								
10.			30		380	44	81	92								
11.			30		315	52	104	112								
12.			37		318	59	104	109								
13.			41		466	57	102	111								
14.			38		452	52	89	94								
15.			29		343	47	75	81								
So 16.			26		120	35	78	79								
17.			36		226	43	85	86								
18.			39		417	42	66	74								
19.			45		506	56	91	95								
20.			54		439	53	73	74								
21.			41		442	48	76	78								
22.			23		184	48	81	86								
So 23.			17		90	36	63	70								
24.			20		267	39	64	66								
25.			39		406	48	81	88								
26.			30		245	37	70	72								
27.			45		597	54	91	103								
28.			47		582	58	95	110								
29.			37		337	55	77	79								
So 30.			26		225	49	83	85								
31.			47		458	65	104	108								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				597	112		
Max.1-MW					104		
Max.3-MW					93		
IGL8-MW							
Max.8-MW							
Max.TMW		54		213	65		
97,5% Perz.							
MMW				105	46		
Gl.JMW		32			48		


Messstelle: HALL IN TIROL / Münzergasse

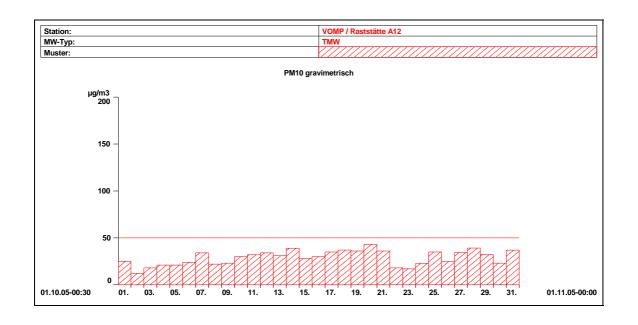

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
CHONGREET II III						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				20		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

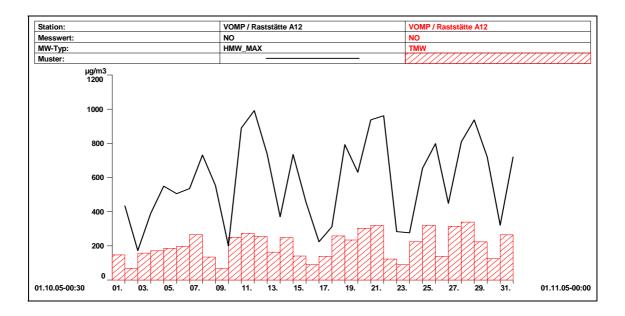
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

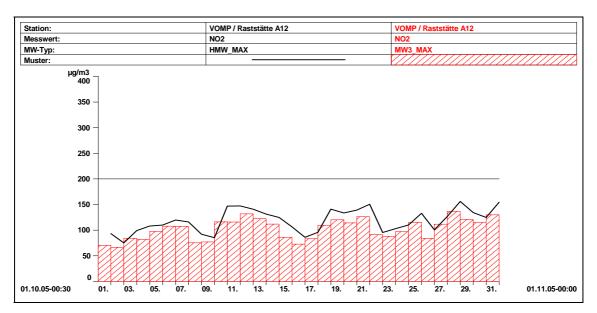
Zeitraum: OKTOBER 2005 Messstelle: VOMP / Raststätte A12


	SC)2	PM10	PM10	NO	_	NO2		_		03			_	СО	_
	_		kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.				25	434	49	76	93								
So 02.				12	173	48	73	75								
03.				18	391	59	96	99								
04.				21	549	50	99	108								
05.				21	506	51	94	110								
06.				24	536	51	115	120								
07.				34	732	66	110	116								
08.				22	553	50	90	92								
So 09.				23	200	41	80	85								
10.				30	890	66	126	147								
11.				32	992	69	130	147								
12.				34	737	75	135	141								
13.				31	370	70	131	131								
14.				39	735	70	116	125								
15.				28	455	54	92	106								
So 16.				30	224	44	83	86								
17.				35	312	54	93	96								
18.				37	793	68	122	141								
19.				36	631	68	126	134								
20.				43	937	71	118	139								
21.				36	962	80	128	151								
22.				18	283	61	93	95								
So 23.				17	277	52	102	103								
24.				23	654	54	105	110								
25.				35	798	70	124	133								
26.				25	449	52	95	101								
27.				34	809	70	119	127								
28.				39	937	83	142	156								
29.				32	721	72	127	134								
So 30.				23	322	63	122	125								
31.				37	720	77	131	154								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				992	156		
Max.1-MW					142		
Max.3-MW					136		
IGL8-MW							
Max.8-MW							
Max.TMW			43	339	83		
97,5% Perz.							
MMW			29	201	62		
Gl.JMW					74		

Messstelle: VOMP / Raststätte A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		1		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONOPATZI AL I II						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

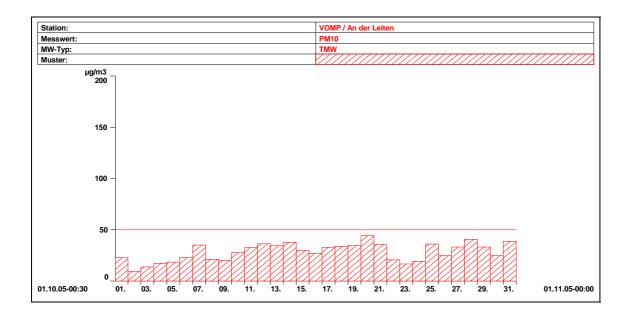
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

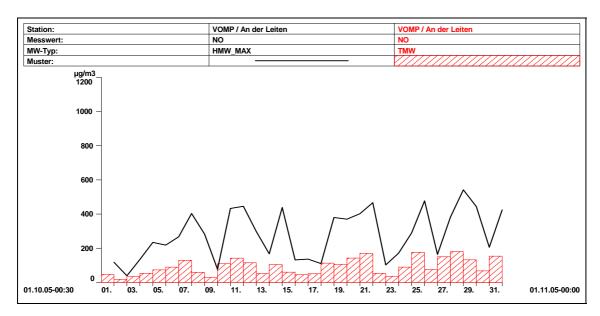
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

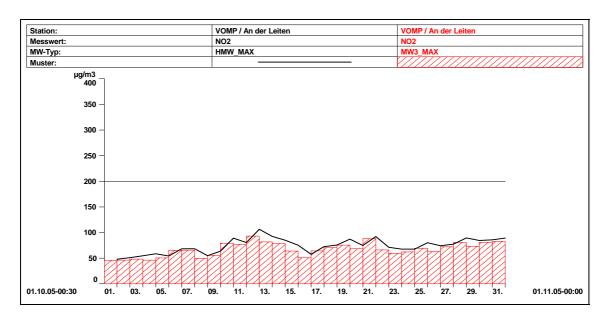
Zeitraum: OKTOBER 2005 Messstelle: VOMP / An der Leiten

	SC)2	PM10	PM10	NO		NO2		_		03				со	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			23		118	32	47	48								
So 02.			9		39	35	50	51								
03.			14		134	35	53	55								
04.			17		234	31	52	59								
05.			19		218	31	52	54								
06.			23		267	34	64	68								
07.			35		403	41	68	68								
08.			21		283	36	52	55								
So 09.			20		77	29	61	64								
10.			28		433	42	86	89								
11.			33		445	46	80	80								
12.			36		298	49	103	106								
13.			34		167	48	84	93								
14.			38		439	47	82	85								
15.			30		132	39	71	75								
So 16.			27		136	33	55	58								
17.			33		110	43	71	72								
18.			34		380	45	75	76								
19.			35		370	47	77	87								
20.			44		402	46	72	75								
21.			36		467	56	92	92								
22.			21		102	44	66	71								
So 23.			17		172	39	62	68								
24.			19		290	33	65	68								
25.			36		478	47	70	80								
26.			25		164	36	71	74								
27.			33		382	44	74	77								
28.			41		542	53	87	89								
29.			33		444	51	77	84								
So 30.			25		206	45	85	86								
31.			39		425	53	88	89								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				542	106		
Max.1-MW					103		
Max.3-MW					93		
IGL8-MW							
Max.8-MW							
Max.TMW		44		180	56		
97,5% Perz.							
MMW				92	42		
Gl.JMW		28			51		


Zeitraum: **OKTOBER 2005** Messstelle: VOMP / An der Leiten

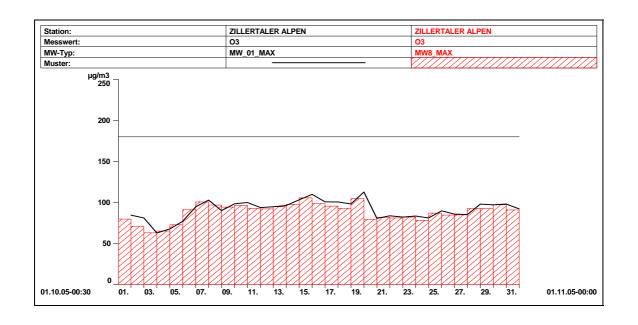

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				18		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: ZILLERTALER ALPEN


	SC)2	PM10	PM10	NO	_	NO2		_		03				СО	
			kont.	grav.					_		-					
	μg		μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$	I			μg/m³	I			mg/m³	I
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									78	80	83	84	86			
So 02.									70	71	75	81	87			
03.									61	63	62	63	66			
04.									62	65	66	68	70			
05.									73	73	76	77	78			
06.									91	91	93	95	95			
07.									100	101	102	103	103			
08.									87	97	93	90	91			
So 09.									94	94	97	98	99			
10.									95	96	98	100	100			
11.									92	93	93	94	94			
12.									91	92	93	95	96			
13.									94	95	96	96	97			
14.									97	97	102	103	105			
15.									104	106	107	110	110			
So 16.									96	98	99	101	101			
17.									95	95	99	101	101			
18.									92	93	95	98	98			
19.									105	104	111	113	113			
20.									77	79	80	81	82			
21.									82	82	83	84	84			
22.									81	81	82	82	83			
So 23.									82	82	83	83	83			
24.									78	78	81	81	82			
25.									87	87	89	90	90			
26.									84	85	86	86	87			
27.									85	85	85	85	85			
28.									91	93	97	98	99			
29.									93	92	96	97	98			
So 30.									97	97	97	98	98			
31.									88	91	91	92	92			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						113	
Max.1-MW						113	
Max.3-MW						111	
IGL8-MW						105	
Max.8-MW						106	
Max.TMW						101	
97,5% Perz.							
MMW						82	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONCECETZ, Alammachuralla					0	
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					-	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					3	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

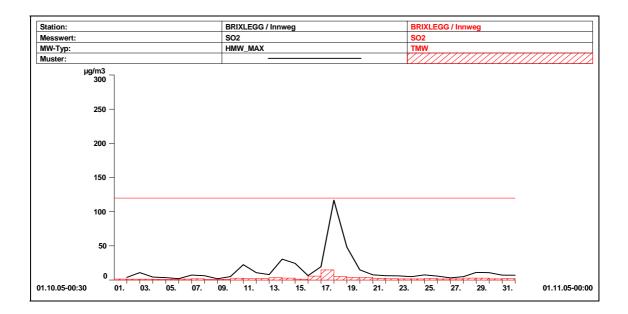
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

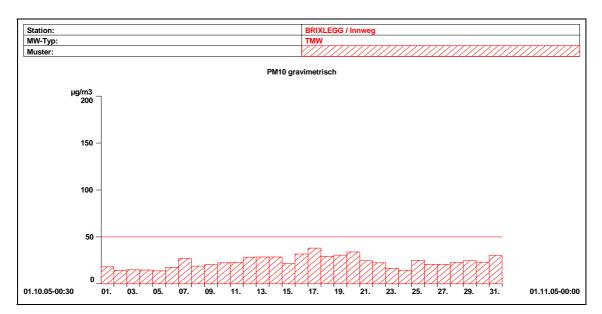
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Zeitraum: OKTOBER 2005 Messstelle: BRIXLEGG / Innweg

	SC)2	PM10	PM10	NO	_	NO2				03	_		_	со	
		, ,	kont.	grav.	/ 2		/ 2				/ 2				/ 2	
	μg		μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				μg/m³				mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 1-MW	max HMW	IGL 8-MW	max 8-MW	max 3-MW	max 1-MW	max HMW	max 8-MW	max 1-MW	max HMW
		4	1101 00		11101 00	1101 00	1-141 44	11171 77	0-141 44	0-141 44	3-141 44	1-141 44	11101 00	0-141 44	1-141 44	111/1//
01. So 02.	1	11		18 14												
03.	1	4		15												
04.	1	4		15												
05.	1	2		14												
06.	1	7		18												
07.	2	6		27												
08.	1	2		19												
So 09.	1	5		20												
10.	3	23		22												
11.	2	11		23												
12.	2	8		28												
13.	3	31		29												
14.	3	24		29												
15.	1	6		21												
So 16.	6	19		32												
17.	15	117		38												
18.	5	48		29												
19.	4	15		31												
20.	4	8		34												
21.	3	6		25												
22.	2	6		22												
So 23.	2	5		16												
24.	2	8		14												
25.	2	6		25												
26.	2	3		21												
27.	2	5		21												
28.	3	11		23												
29.	3	11		25												
So 30.	2	7		23												
31.	2	7		30								l				

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	117						
Max.1-MW							
Max.3-MW	68						
IGL8-MW							
Max.8-MW							
Max.TMW	15		38				
97,5% Perz.	12						
MMW	3		23				
Gl.JMW							


Zeitraum: **OKTOBER 2005** Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0					
IG-L: Grenzwerte menschliche Gesundheit	0	0				
IG-L: Zielwerte menschliche Gesundheit		0				
IG-L: Zielwerte Ökosysteme, Vegetation	0					
OZONGESETZ: Alarmschwelle		· ·				
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					
VDI-RL 2310: NO-Grenzwert					•	

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

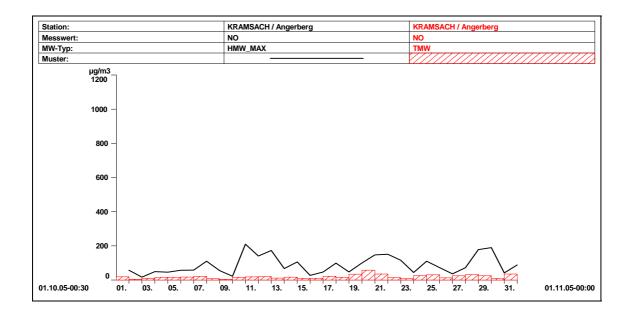
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

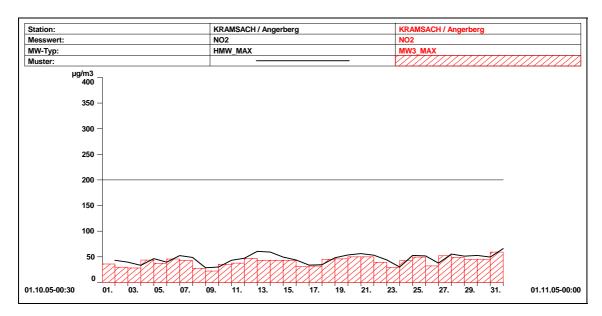
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

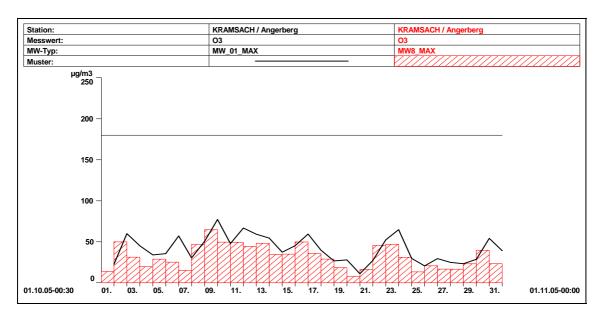
 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

	SC	02	PM10	PM10	NO		NO2				03			_	СО	
		, ,	kont.	grav.	/ 2		/ 2				/ 2				/ 2	
	μg		μg/m³	μg/m³	$\mu g/m^3$		μg/m³			1	μg/m³	l			mg/m³	<u> </u>
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 1-MW	max HMW	IGL 8-MW	max 8-MW	max 3-MW	max 1-MW	max HMW	max 8-MW	max 1-MW	max HMW
	1101 00	I IIVI VV	1101 00	1 101 00										O-1V1 VV	1-101 00	THVIVV
01.					57	24	41 35	43 40	14	20	20	23	26			
So 02.					17 49	18 21	32	33	50 29	50 31	52 43	60 45	62 47			
04.					46	25	45	33 46	19	20	30	34	38			
05.					57	23	39	40	20	29	33	36	36 37			
06.					58	27	51	52	25	25	43	57	59			
07.					110	28	47	49	13	15	21	30	32			
08.					55	21	27	29	47	47	50	50	52			
So 09.					22	15	27	30	63	65	72	77	78			
10.					210	27	37	43	35	50	46	48	51			
11.					141	27	43	47	48	49	62	67	69			
12.					173	35	57	61	40	44	55	59	66			
13.					67	32	53	59	44	48	53	54	58			
14.					106	31	48	49	34	34	37	37	39			
15.					27	30	39	44	34	35	42	45	47			
So 16.					47	22	31	34	50	50	53	59	60			
17.					99	24	33	35	35	36	38	40	40			
18.					47	30	46	48	20	29	25	27	27			
19.					100	36	50	54	11	18	25	28	31			
20.					147	39	53	56	8	8	9	11	12			
21.					151	32	52	53	17	17	26	27	28			
22.					116	27	39	44	42	45	51	52	55			
So 23.					44	17	25	30	48	47	59	65	67			
24.					110	26	49	53	19	31	30	30	32			
25.					73	30	51	52	13	13	18	21	24			
26.					36	25	31	38	21	21	27	29	30			
27.					72	34	55	55	17	17	24	25	26			
28.					178	36	51	51	16	17	23	23	27			
29.					190	34	48	53	23	23	27	29	31			
So 30.					42	30	48	49	38	40	51	54	58			
31.					88	42	63	66	23	23	34	39	41			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	97%	
Max.HMW				210	66	78	
Max.1-MW					63	77	
Max.3-MW					59	72	
IGL8-MW						63	
Max.8-MW						65	
Max.TMW				58	42	34	
97,5% Perz.							
MMW				19	28	16	, in the second
Gl.JMW					26		


Messstelle: KRAMSACH / Angerberg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1	1	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

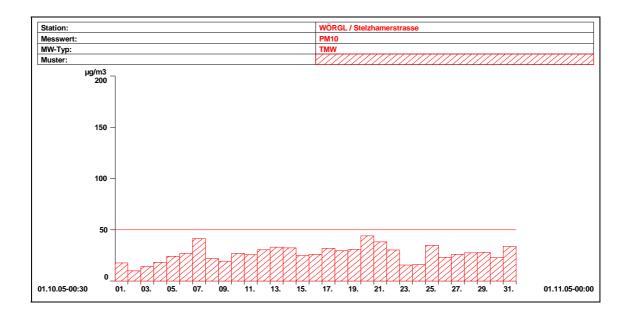
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

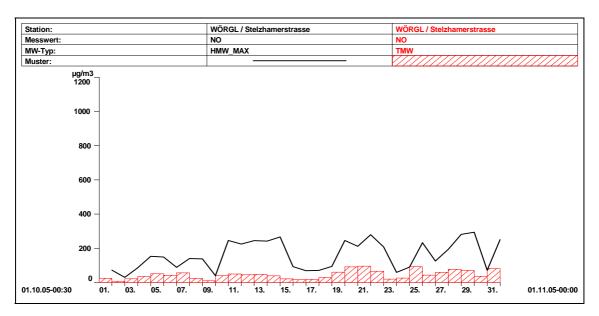
 $Messstelle: \quad W\ddot{O}RGL \, / \, Stelzhamerstrasse$

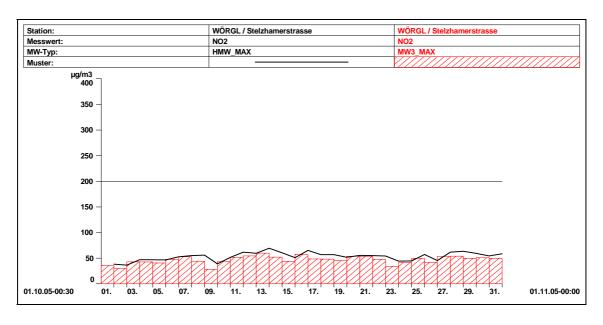
	SC)2	PM10	PM10	NO		NO2		_	_	03		_		CO	
			kont.	grav.					-							
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			18		72	27	37	38								
So 02.			10		30	22	33	36								
03.			14		86	33	45	47								
04.			18		153	29	47	47								
05.			24		149	27	46	47								
06.			27		88	28	51	53								
07.			41		140	37	53	55								
08.			22		138	27	51	56								
So 09.			19		39	18	35	39								
10.			27		246	29	46	52								
11.			26		224	32	55	62								
12.			30		245	37	58	60								
13.			33		242	36	65	69								
14.			32		266	33	58	60								
15.			25		93	27	49	51								
So 16.			26		68	26	60	65								
17.			32		70	31	50	57								
18.			30		94	29	55	57								
19.			31		245	34	48	52								
20.			44		211	41	54	55								
21.			38		279	37	55	55								
22.			30		208	34	50	54								
So 23.			16		59	26	42	44								
24.			16		90	27	42	45								
25.			35		233	33	49	57								
26.			23		125	26	42	45								
27.			26		194	31	55	62								
28.			27		281	34	59	63								
29.			28		294	33	55	59								
So 30.			23		71	29	52	54								
31.			34		251	37	54	59								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				294	69		
Max.1-MW					65		
Max.3-MW					60		
IGL8-MW							
Max.8-MW							
Max.TMW		44		95	41		
97,5% Perz.							
MMW				45	31		
Gl.JMW		27			36		

OKTOBER 2005 Zeitraum:


Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONOESETZ, Alamasaharalla						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: KUFSTEIN / Praxmarerstrasse

	SO)2	PM10	PM10	NO		NO2		_		03			_	СО	
			kont.	grav.			-									
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	1	2	16		39	25	34	36								
So 02.	1	1	8		24	20	37	46								
03.	1	2	9		58	25	36	40								
04.	1	4	13		116	30	53	54								
05.	1	4	17		106	26	35	38								
06.	2	3	21		97	28	46	49								
07.	2	4	30		115	35	54	61								
08.	1	4	19		112	26	46	52								
So 09.	1	3	21		104	18	27	33								
10.	1	3	20		85	25	36	36								
11.	1	3	20		86	32	54	55								
12.	1	4	26		116	35	49	58								
13.	1	4	26		113	34	59	71								
14.	1	4	28		100	28	37	41								
15.	1	2	22		58	28	38	41								
So 16.	1	2	25		46	22	35	38								
17.	1	3	22		53	29	38	40								
18.	1	4	19		105	26	33	37								
19.	2	4	26		113	36	46	47								
20.	3	5	31		141	36	52	53								
21.	2	5	24		148	33	50	52								
22.	2	3	17		70	34	51	55								
So 23.	1	2	12		29	19	27	28								
24.	1	2	12		59	24	47	49								
25.	2	4	20		112	32	58	60								
26.	1	3	19		65	27	48	56								
27.	2	4	19		136	32	55	56								
28.	2	4	21		153	30	54	55								
29.	2	4	19		119	31	49	52								
So 30.	1	3	18		43	27	42	45								
31.	2	5	22		126	33	45	50								

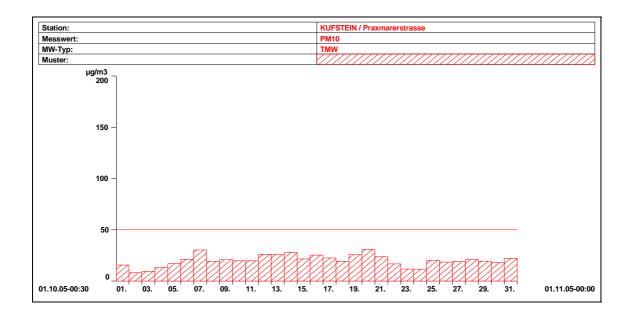
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	5			153	71		
Max.1-MW					59		
Max.3-MW	4				52		
IGL8-MW							
Max.8-MW							
Max.TMW	3	31		61	36		
97,5% Perz.	4						
MMW	1			27	29		
Gl.JMW		21			32		

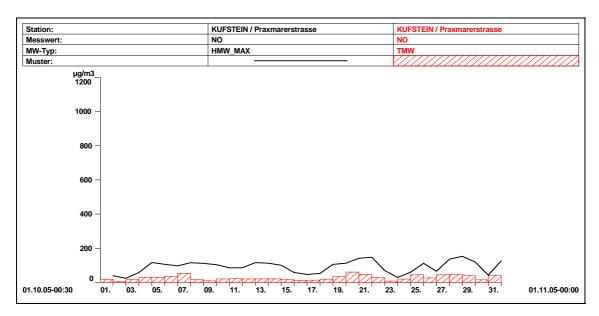

Messstelle: KUFSTEIN / Praxmarerstrasse

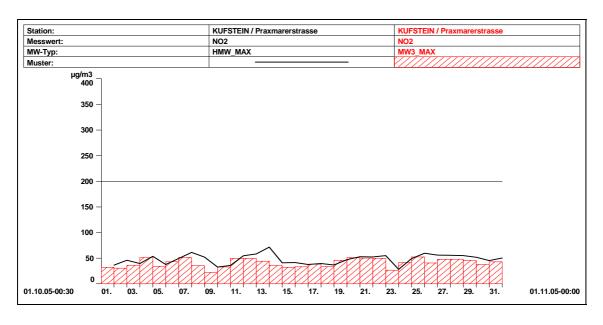
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0			0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert

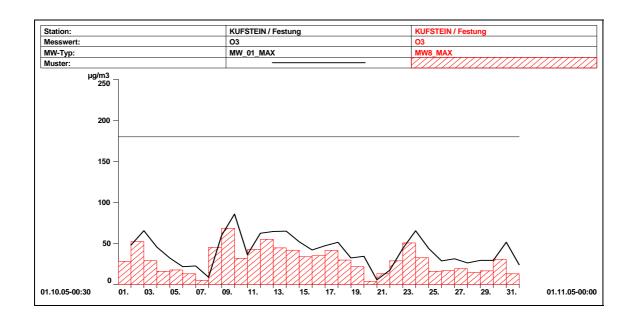



0

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Zeitraum: OKTOBER 2005 Messstelle: KUFSTEIN / Festung


	SC)2	PM10	PM10	NO	_	NO2				03				СО	_
			kont.	grav.					_							
	μg/		μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				μg/m³				mg/m³	I
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									25	28	42	48	54			
So 02.	_								52	52	59	65	66			
03.									24	29	37	45	48			
04.									15	16	28	32	34			
05.									15	18	26	22	26			
06.									12	13	20	22	23			
07.									5	5	7	9	12			
08.									41	45	55	60	61			
So 09.									70	68	83	86	87			
10.									27	32	34	36	39			
11.									35	42	57	62	68			
12.									50	55	62	65	66			
13.									44	45	63	65	67			
14.									41	42	49	52	52			
15.									33	34	37	42	42			
So 16.									36	35	46	47	48			
17.									40	41	49	51	52			
18.									28	30	31	32	34			
19.									21	22	35	34	41			
20.									4	4	5	6	6			
21.									11	13	16	17	18			
22.									27	29	41	44	45			
So 23.									51	51	65	65	69			
24.									31	32	43	44	45			
25.									16	16	26	29	32			
26.									15	17	28	31	32			
27.									18	19	26	26	31			
28.									13	14	22	29	36			
29.									15	17	25	29	36			
So 30.									32	31	47	51	54			
31.									13	13	21	24	27			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						87	
Max.1-MW						86	
Max.3-MW						83	
IGL8-MW						70	
Max.8-MW						68	
Max.TMW						30	
97,5% Perz.							
MMW						13	
Gl.JMW							

Zeitraum: OKTOBER 2005 Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OCOMODOCETTO AL 1 III					0	
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					·	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					1	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

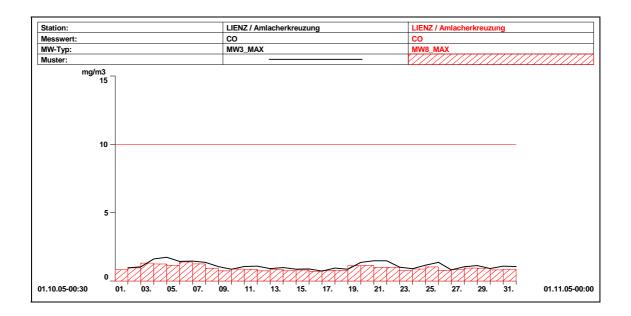
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

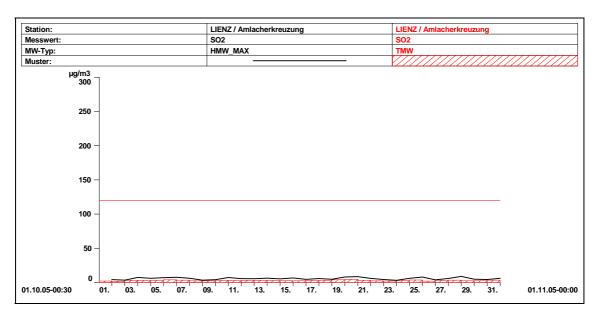
Messstelle: LIENZ / Amlacherkreuzung

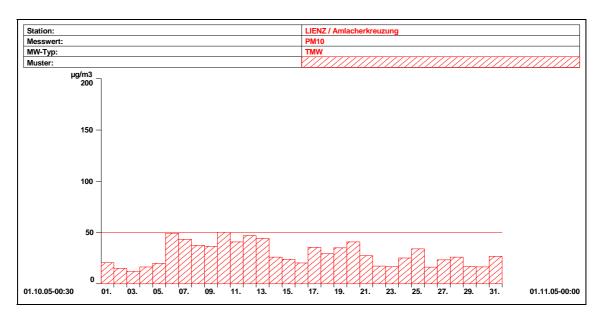
	SO)2	PM10	PM10	NO		NO2		03			_	_	со		
	110	/m³	kont. μg/m³	grav. μg/m³	μg/m³	_	$\mu g/m^3$ $\mu g/m^3$			ug/m³				mg/m³		
		max	μβ/ш	μ ₈ / III	max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	2	4	21		128	31	66	69						0.8	1.0	1.1
So 02.	2	3	15		128	23	54	59						1.0	1.2	1.4
03.	3	7	12		341	40	96	107						1.3	1.7	1.9
04.	3	6	16		261	47	75	89						1.2	1.8	1.9
05.	3	7	20		320	51	86	91						1.1	1.6	1.6
06.	4	8	49		329	55	98	101						1.4	1.6	1.9
07.	3	6	43		278	55	92	96						1.3	1.5	1.6
08.	2	3	38		96	30	56	62						0.9	1.3	1.3
So 09.	2	4	37		149	19	42	46						0.7	0.9	1.0
10.	3	7	50		278	32	62	69						0.9	1.1	1.3
11.	3	6	41		240	29	62	71						0.9	1.2	1.6
12.	3	5	47		206	32	58	64						0.7	1.0	1.2
13.	3	6	44		253	34	58	64						0.9	1.2	1.2
14.	3	5	26		198	34	59	59						0.8	1.0	1.0
15.	3	7	24		132	26	40	42						0.8	0.9	1.0
So 16.	2	4	20		152	21	41	44						0.7	0.8	1.0
17.	3	6	35		223	33	56	61						0.8	1.1	1.1
18.	3	5	29		132	32	53	64						0.8	0.8	1.0
19.	4	8	35		276	35	74	89						1.1	1.6	1.9
20.	4	8	41		327	36	77	94						1.1	1.6	1.7
21.	3	6	28		217	35	83	89						1.0	1.7	1.8
22.	2	4	17		134	28	65	69						1.0	1.4	1.4
So 23.	2	3	17		85	22	37	44						0.8	1.0	1.2
24.	3	6	25		252	35	60	71						0.9	1.3	1.5
25.	4	8	34		339	43	103	120						1.0	1.6	2.0
26.	2	4	16		108	21	46	53						0.8	1.0	1.2
27.	3	6	23		210	36	66	73						0.8	1.2	1.2
28.	3	9	26		219	37	61	64						1.0	1.2	1.3
29.	2	5	17		150	27	52	53						0.9	1.0	1.0
So 30.	2	4	17		106	25	57	61						0.8	1.1	1.2
31.	3	6	27		180	34	50	60						0.9	1.2	1.3

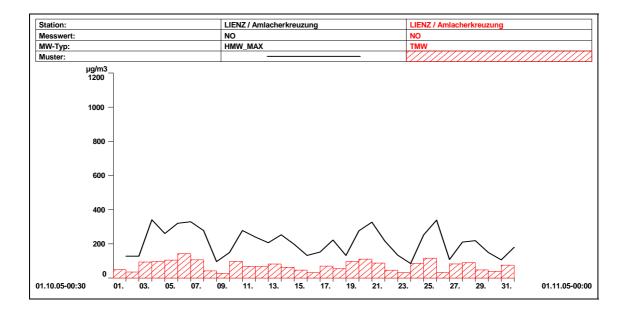
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		31
Verfügbarkeit	98%	100%		98%	98%		100%
Max.HMW	9			341	120		2.0
Max.1-MW					103		1.8
Max.3-MW	7				95		1.7
IGL8-MW							
Max.8-MW							1.4
Max.TMW	4	50		143	55		1.0
97,5% Perz.	6						
MMW	3			71	33		0.7
Gl.JMW		30			40		

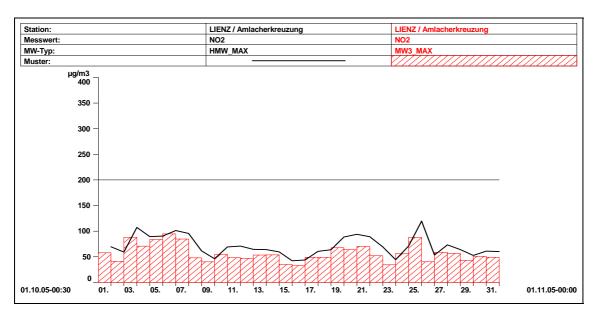
OKTOBER 2005 Zeitraum:


Messstelle: LIENZ / Amlacherkreuzung

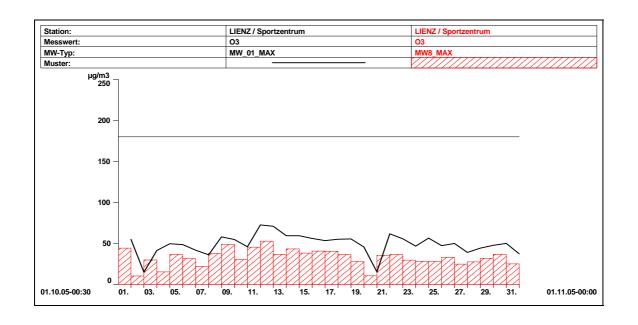

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO			
Gesetzliche Alarm-, Grenz- und Zielwerte									
IG-L: Warnwerte	0			0					
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		0			
IG-L: Zielwerte menschliche Gesundheit		0		0					
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.					
OZONGESETZ: Alarmschwelle									
OZONGESETZ: Informationsschwelle									
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit									
2.FVO gegen forstschädliche Luftverunreinigungen	0								
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0			0		0			
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)							
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				9					
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1					
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0								
VDI-RL 2310: NO-Grenzwert	_		0						


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Zeitraum: OKTOBER 2005 Messstelle: LIENZ / Sportzentrum


	SC)2	PM10	PM10	NO		NO2		03			_	со	_		
	μg	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³		$\mu g/m^3$ $\mu g/m^3$		μα/m³		mg/m³			
		max	μ8,111	μg/111	max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									41	44	54	55	55			
So 02.									10	10	13	15	19			
03.									29	30	41	41	44			
04.									15	15	33	50	50			
05.									27	36	48	49	51			
06.									23	31	37	42	45			
07.									22	22	32	36	37			
08.									39	38	56	58	59			
So 09.									49	49	54	55	55			
10.									27	30	44	46	46			
11.									40	45	66	73	74			
12.									50	53	69	71	73			
13.									35	37	58	59	64			
14.									41	43	59	59	61			
15.									36	38	52	56	57			
So 16.									39	41	52	53	54			
17.									38	40	53	55	56			
18.									36	36	54	55	57			
19.									27	28	42	46	46			
20.									10	10	15	15	16			
21.									32	35	57	62	63			
22.									36	36	49	56	59			
So 23.									29	30	43	47	47			
24.									28	28	51	56	57			
25.									28	28	44	47	47			
26.									32	33	47	50	53			
27.									25	25	37	39	40			
28.									27	27	43	44	47			
29.									31	32	45	48	48			
So 30.									36	37	48	50	50			
31.									24	25	35	37	38			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						74	
Max.1-MW						73	
Max.3-MW						69	
IGL8-MW						50	
Max.8-MW						53	
Max.TMW						28	
97,5% Perz.							
MMW						15	
Gl.JMW							

Zeitraum: OKTOBER 2005 Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					0	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert	_					

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl.Nr. 199/84)

Grenzwerte für Schwefeldioxid (SO2):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO2)									
April - Oktober November - März									
97,5 Perzentil für den Halbstundenmittelwert (HMW) in den Monaten	0,07 mg/m³	0,15 mg/m³							
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.									
Tagesmittelwert (TMW) 0,05 mg/m³ 0,10 mg/m³									

II. Warnwerte für Ozon laut Ozongesetz 1992:

Informationsschwelle	$180\mu\text{g/m}^3$ als Einstundenmittelwert (stündlich gleitend)						
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)						
Zielwert	120 µg/m³ als Achtstundenmittelwert *)						
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.							

III. Vereinbarung gemäß Art. 15a B-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe und über Maßnahmen zur Verringerung der Belastung der Umwelt samt Anlagen:

Immissionswerte im Sinne des Artikels 3

(Konzentrationswerte in mg/m³, bezogen auf 20° C und 1013 mbar)

1.Schwefeldioxid in Verbindung mit Staub							
als Tagesmittelwert							
als Halbstundenmittelwert; drei Halbstundenmittelwerte pro Tag bis zu einer Konzentration von 0,5 mg SO ₂ /m³ gelten nicht als Überschreitung des Halbstundenmittelwertes							
1.3) 0,2 mg Staub/m³ als Tagesmittelwert; dieser Wert bezieht sich auf Staub mit ein Stock´schen Äquivalentdurchmesser kleiner 10μm.							
2. Kohlenmonoxid							
als gleitender Achtstundenmittelwert							
als Einstundenmittelwert							
3.Stickstoffdioxid							
als Halbstundenmittelwert							

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO2)					August 1989: Luftqualitätskriterien Ozon (O3)						
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO2 in mg/m³				Wirkungsbezogene Immissionsgrenzkonzentrationen für O3 in mg/m³								
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)				
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-				
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060				
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010									
*) als Mittelwert der Siebe	enstunden	mittelwe	rte in der	Zeit von 09.00 – 16.00 Uhr MEZ wä	ährend dei	Vegetat	ionsperio	ode				

Die hi	Die höchstzulässige Konzentration von Schwefeldioxid (SO2) und Staub in der freien Luft beträgt										
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten								
		Schwefeldioxid	in mg/m³ Luft								
	April - Oktober	November - März									
Tagesmittelwert	0,05 0,10		0,20								
Halbstundenmittelwert	0,07 0,15		0,20								
		Staub in	mg/m^3								
Tagesmittelwert	0,	12	0,20								
	Die Überschreitung dieses	s Grenzwertes für Staub an	Die Überschreitung dieses Halbstundenmittelwertes								
	sieben nicht aufeinanderfo	lgenden Tagen im Jahr gilt	dreimal pro Tag bis höchstens 0,50 mg SO2/m³gilt								
	nicht als Luftbe	eeinträchtigung.	nicht als Luftbeeinträchtigung.								

V. Immissionsschutzgesetz-Luft i.d.g.F.

a) Schutz der menschlichen Gesundheit (BGBl. I Nr. 34/2003)

		1			
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **
Schwebestaub				150	
PM_{10}				50 ***)	40
	Warı	nwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Ziel	werte in μg/m³			
Stickstoffdioxid				80	
PM_{10}				50	20

^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 µg/m 3 gelten nicht als Überschreitung.

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001)

Grenzwerte in μg/m³					
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid					201)
Stickstoffoxide					30
Zielwerte in µg/m³					
Schwefeldioxid				50	
Stickstoffdioxid				80	
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)					

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)			
Tagesmittelwert	0,5 mg/m³		
Halbstundenmittelwert	1,0 mg/m³		

^{**)} Der Immissionsgrenzwert von 30 μg/m 3 ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m 3 bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m 3 verringert. Die Toleranzmarge von 10 μg/m 3 gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m 3 gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25."

IG-L Überschreitungen:

PM10 Staub

a) kontinuierlich

Tagesmittelwerte>50µg/m3 im Zeitraum 01.10.05-00:30 - 01.11.05-00:00

MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse Anzahl: 2	20.10.2005 31.10.2005	57 59
HALL IN TIROL / Münzergasse Anzahl: 1	20.10.2005	54
IMST / Imsterau Anzahl: 1	31.10.2005	65

b) gravimetrisch

Tagesmittelwerte>50µg/m3 im Zeitraum 01.10.05-00:30 - 01.11.05-00:00

MESSSTELLE	Datum	Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00 Halbstundenmittelwert>200 μ g/m3

MESSSTELLE	Datum	Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00
Tagesmittelwert>80µg/m3

MESSSTELLE	Datum	Wert[µg/m3]
VOMP / Raststätte A12	28.10.2005	83
Anzahl: 1		

IG-L Warnwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00 Dreistundenmittelwert>400µg/m3

MESSSTELLE	Datum	Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.10.05-00:30 -01.11.05-00:00

Tagesmittelwert>50µg/m3

MESSSTELLE

Datum ______

Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00 Halbstundenmittelwert>200µg/m3

MESSSTELLE

Datum ______

Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00 Dreistundenmittelwert>500µg/m3

MESSSTELLE

Datum

Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00 Achtstundenmittelwert>10mg/m3

MESSSTELLE

Datum ______

Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

IG-L Zielwertüberschreitungen im Zeitraum 01.10.05-00:30 - 01.11.05-00:00 Achtstundenmittelwert>120µg/m3

MESSSTELLE

Wert[µg/m3] ______

Im Berichtszeitraum wurden keine Überschreitungen festgestellt! Überschreitungen der IG-L Informationsschwelle im Zeitraum 01.10.05-00:30 - 01.11.05-00:00

Einstundenmittelwert>180µg/m3

MESSSTELLE

MESSSTELLE

Datum

Wert[µq/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der IG-L Alarmschwelle im Zeitraum

01.10.05-00:30 - 01.11.05-00:00 Einstundenmittelwert>240µg/m3

Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!